Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Org Biomol Chem ; 22(14): 2835-2843, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511621

RESUMO

Activation of a silent gene cluster in Streptomyces nodosus leads to synthesis of a cinnamoyl-containing non-ribosomal peptide (CCNP) that is related to skyllamycins. This novel CCNP was isolated and its structure was interrogated using mass spectrometry and nuclear magnetic resonance spectroscopy. The isolated compound is an oxidised skyllamycin A in which an additional oxygen atom is incorporated in the cinnamoyl side-chain in the form of an epoxide. The gene for the epoxide-forming cytochrome P450 was identified by targeted disruption. The enzyme was overproduced in Escherichia coli and a 1.43 Å high-resolution crystal structure was determined. This is the first crystal structure for a P450 that forms an epoxide in a substituted cinnamoyl chain of a lipopeptide. These results confirm the proposed functions of P450s encoded by biosynthetic gene clusters for other epoxidized CCNPs and will assist investigation of how epoxide stereochemistry is determined in these natural products.


Assuntos
Sistema Enzimático do Citocromo P-450 , Depsipeptídeos , Streptomyces , Sistema Enzimático do Citocromo P-450/química , Peptídeos Cíclicos/química
2.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609350

RESUMO

Ergosterol is a critical component of fungal plasma membranes. Although many currently available antifungal compounds target the ergosterol biosynthesis pathway for antifungal effect, current knowledge regarding ergosterol synthesis remains incomplete for filamentous fungal pathogens like Aspergillus fumigatus. Here, we show for the first time that the lipid droplet-associated sterol C-24 methyltransferase, Erg6, is essential for A. fumigatus viability. We further show that this essentiality extends to additional Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Neither the overexpression of a putative erg6 paralog, smt1, nor the exogenous addition of ergosterol could rescue erg6 deficiency. Importantly, Erg6 downregulation results in a dramatic decrease in ergosterol and accumulation in lanosterol and is further characterized by diminished sterol-rich plasma membrane domains (SRDs) at hyphal tips. Unexpectedly, erg6 repressed strains demonstrate wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, repressing erg6 expression reduced fungal burden accumulation in a murine model of invasive aspergillosis. Taken together, our studies suggest that Erg6, which shows little homology to mammalian proteins, is potentially an attractive antifungal drug target for therapy of Aspergillus infections.

3.
Microbiol Spectr ; 11(4): e0147423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358415

RESUMO

The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 patients in Kuwait and identified by phenotypic and molecular methods were analyzed. An Etest was initially used to identify isolates with rs-AMB. Specific mutations in ERG2 and ERG6 involved in ergosterol biosynthesis were detected by PCR sequencing. Twelve selected isolates were also tested by the SensiTitre Yeast One (SYO), and total cell sterols were evaluated by gas chromatography-mass spectrometry and ERG3 and ERG11 sequencing. Eight isolates from 8 patients showed rs-AMB by Etest, including 2 isolates with additional resistance to fluconazole or to all three antifungals. SYO correctly identified 8 of 8 rs-AMB isolates. A nonsynonymous mutation in ERG2 was detected in 6 of 8 rs-AMB isolates but also in 3 of 73 isolates with a wild-type AMB pattern. One rs-AMB isolate contained a deletion (frameshift) mutation in ERG2. One or more nonsynonymous mutations was detected in ERG6 in 11 of 81 isolates with the rs-AMB or wild-type AMB pattern. Among 12 selected isolates, 2 and 2 isolates contained a nonsynonymous mutation(s) in ERG3 and ERG11, respectively. Ergosterol was undetectable in 7 of 8 rs-AMB isolates, and the total cell sterol profiles were consistent with loss of ERG2 function in 6 rs-AMB isolates and loss of ERG3 activity in another rs-AMB isolate. Our data showed that ERG2 is a major target conferring rs-AMB in clinical C. kefyr isolates. IMPORTANCE Some yeast species exhibit intrinsic resistance or rapidly acquire resistance to azole antifungals. Despite >50 years of clinical use, resistance to amphotericin B (AMB) among yeast species has been extremely rarely reported until recently. Reduced susceptibility to AMB (rs-AMB) among yeast species is, therefore, a matter of serious concern due to the availability of only four classes of antifungal drugs. Recent studies in Candida glabrata, Candida lusitaniae, and Candida auris have identified ERG genes involved in ergosterol biosynthesis as the major targets conferring rs-AMB. The results of this study also show that nonsynonymous mutations in ERG2 impair its function, abolish ergosterol from C. kefyr, and confer rs-AMB. Thus, rapid detection of rs-AMB among clinical isolates will help in proper management of invasive C. kefyr infections.


Assuntos
Anfotericina B , Antifúngicos , Humanos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Esteróis , Mutação , Ergosterol
4.
J Inorg Biochem ; 245: 112241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209461

RESUMO

Cytochromes P450 (CYP), enzymes involved in the metabolism of endogenous and xenobiotic substrates, provide an excellent model system to study how membrane proteins with unique functions have catalytically adapted through evolution. Molecular adaptation of deep-sea proteins to high hydrostatic pressure remains poorly understood. Herein, we have characterized recombinant cytochrome P450 sterol 14α-demethylase (CYP51), an essential enzyme of cholesterol biosynthesis, from an abyssal fish species, Coryphaenoides armatus. C. armatus CYP51 was heterologously expressed in Escherichia coli following N-terminal truncation and purified to homogeneity. Recombinant C. armatus CYP51 bound its sterol substrate lanosterol giving a Type I binding spectra (KD 15 µM) and catalyzed lanosterol 14α-demethylation turnover at 5.8 nmol/min/nmol P450. C. armatus CYP51 also bound the azole antifungals ketoconazole (KD 0.12 µM) and propiconazole (KD 0.54 µM) as determined by Type II absorbance spectra. Comparison of C. armatus CYP51 primary sequence and modeled structures with other CYP51s identified amino acid substitutions that may confer an ability to function under pressures of the deep sea and revealed heretofore undescribed internal cavities in human and other non-deep sea CYP51s. The functional significance of these cavities is not known. PROLOGUE: This paper is dedicated in memory of Michael Waterman and Tsuneo Omura, who as good friends and colleagues enriched our lives. They continue to inspire us.


Assuntos
Antifúngicos , Lanosterol , Animais , Humanos , Lanosterol/química , Esterol 14-Desmetilase/química , Antifúngicos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Esteróis , Peixes
5.
Sci Rep ; 12(1): 16232, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171457

RESUMO

The molecular evolution of cytochromes P450 and associated redox-driven oxidative catalysis remains a mystery in biology. It is widely believed that sterol 14α-demethylase (CYP51), an essential enzyme of sterol biosynthesis, is the ancestor of the whole P450 superfamily given its conservation across species in different biological kingdoms. Herein we have utilized X-ray crystallography, molecular dynamics simulations, phylogenetics and electron transfer measurements to interrogate the nature of P450-redox partner binding using the naturally occurring fusion protein, CYP51-ferredoxin found in the sterol-producing bacterium Methylococcus capsulatus. Our data advocates that the electron transfer mechanics in the M. capsulatus CYP51-ferredoxin fusion protein involves an ensemble of ferredoxin molecules in various orientations and the interactions are transient. Close proximity of ferredoxin, however, is required to complete the substrate-induced large-scale structural switch in the P450 domain that enables proton-coupled electron transfer and subsequent oxygen scission and catalysis. These results have fundamental implications regarding the early evolution of electron transfer proteins and for the redox reactions in the early steps of sterol biosynthesis. They also shed new light on redox protein mechanics and the subsequent diversification of the P450 electron transfer machinery in nature.


Assuntos
Ferredoxinas , Prótons , Sistema Enzimático do Citocromo P-450/metabolismo , Elétrons , Ferredoxinas/metabolismo , Oxirredução , Oxigênio/metabolismo , Esterol 14-Desmetilase/química , Esteróis
6.
Biomolecules ; 12(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009001

RESUMO

Flavodoxins are small electron transport proteins that are involved in a myriad of photosynthetic and non-photosynthetic metabolic pathways in Bacteria (including cyanobacteria), Archaea and some algae. The sequenced genome of 0305φ8-36, a large bacteriophage that infects the soil bacterium Bacillus thuringiensis, was predicted to encode a putative flavodoxin redox protein. Here we confirm that 0305φ8-36 phage encodes a FMN-containing flavodoxin polypeptide and we report the expression, purification and enzymatic characterization of the recombinant protein. Purified 0305φ8-36 flavodoxin has near-identical spectral properties to control, purified Escherichia coli flavodoxin. Using in vitro assays we show that 0305φ8-36 flavodoxin can be reconstituted with E. coli flavodoxin reductase and support regio- and stereospecific cytochrome P450 CYP170A1 allyl-oxidation of epi-isozizaene to the sesquiterpene antibiotic product albaflavenone, found in the soil bacterium Streptomyces coelicolor. In vivo, 0305φ8-36 flavodoxin is predicted to mediate the 2-electron reduction of the ß subunit of phage-encoded ribonucleotide reductase to catalyse the conversion of ribonucleotides to deoxyribonucleotides during viral replication. Our results demonstrate that this phage flavodoxin has the potential to manipulate and drive bacterial P450 cellular metabolism, which may affect both the host biological fitness and the communal microbiome. Such a scenario may also be applicable in other viral-host symbiotic/parasitic relationships.


Assuntos
Flavodoxina , Streptomyces coelicolor , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/genética , Flavodoxina/metabolismo , Oxirredução , Solo , Streptomyces coelicolor/metabolismo
7.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801640

RESUMO

Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and ß-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.


Assuntos
Amoeba , Vírus Gigantes , Vírus , Vírus de DNA/genética , Genoma Viral , Vírus Gigantes/genética , Filogenia , Vírus/genética
8.
Rapid Commun Mass Spectrom ; 36(15): e9327, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35610187

RESUMO

RATIONALE: Ionization by atmospheric pressure gas discharge has been employed for a long time in mass spectrometry. Inductively coupled plasma mass spectrometry is an exemplar, and widely used for elemental analysis. The technique has less uptake in organic mass spectrometry. We describe a simple source design that can be readily implemented in most atmospheric pressure ionization (API) systems and compare its performance with that of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). METHODS: An in-house designed helium gas discharge source (referred to as 'GlowFlow') was used on a Xevo G2-S time-of-flight mass spectrometer. The GlowFlow source was transferred to a compatible Xevo TQ-S triple-quadrupole mass spectrometer using an ultrahigh-performance liquid chromatograph inlet. Its performance was compared to that of Waters ESI and APCI sources. RESULTS: Preliminary results of GlowFlow on the Swansea instrument are presented to establish context and include analysis of low-molecular-mass polymers, benzoic acid and cinnamic acid. Comparison of performance on the Xevo TQ-S triple-quadrupole mass spectrometer involved three test mixtures. The method limits of detection (six-mix) for positive-ion GlowFlow source were between 0.03 and 10.00 pg with good linear response over two to four orders of magnitude and values of R2 > 0.98. The GlowFlow ionization source provided a signal intensity that was an order of magnitude greater than that of ESI for an atmospheric pressure gas chromatography standard mix and ionized several compounds that ESI could not. CONCLUSIONS: The current GlowFlow design is relatively simple to retrofit to most API systems due to its small size. The sensitivity of the GlowFlow design is typically an order of magnitude less than that of ESI in positive-ion mode, but similar in sensitivity in negative-ion mode and comparable to that of APCI.


Assuntos
Pressão Atmosférica , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Peso Molecular , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
mBio ; 13(2): e0011522, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35380453

RESUMO

The azole antifungals inhibit sterol 14α-demethylase (S14DM), which depletes cellular ergosterol and promotes synthesis of the dysfunctional lipid 14α-methylergosta-8,24(28)-dien-3ß,6α-diol, ultimately arresting growth. Mutations that inactivate sterol Δ5,6-desaturase (Erg3p), the enzyme that produces the sterol-diol upon S14DM inhibition, enhances Candida albicans growth in the presence of the azoles. However, erg3 null mutants are sensitive to some physiological stresses and can be less virulent than the wild type. These fitness defects may disfavor the selection of null mutants within patients. The objective of this study was to investigate the relationship between Erg3p activity, C. albicans pathogenicity, and the efficacy of azole therapy. An isogenic panel of strains was constructed that produce various levels of the ERG3 transcript. Analysis of the sterol composition confirmed a correspondingly wide range of Erg3p activity. Phenotypic analysis revealed that even moderate reductions in Erg3p activity are sufficient to greatly enhance C. albicans growth in the presence of fluconazole in vitro without impacting fitness. Moreover, even low levels of Erg3p activity are sufficient to support full virulence of C. albicans in the mouse model of disseminated infection. Finally, while the antifungal efficacy of fluconazole was similar for all strains in immunocompetent mice, there was an inverse correlation between Erg3p activity and the capacity of C. albicans to endure treatment in leukopenic mice. Collectively, these results establish that relative levels of Erg3p activity determine the antifungal efficacy of the azoles upon C. albicans and reveal the critical importance of host immunity in determining the clinical impact of this resistance mechanism. IMPORTANCE Mutations that completely inactivate Erg3p enable the prevalent human pathogen C. albicans to endure the azole antifungals in vitro. However, such null mutants are less frequently identified in azole-resistant clinical isolates than other resistance mechanisms, and previous studies have reported conflicting outcomes regarding antifungal resistance of these mutants in animal models of infection. The results of this study clearly establish a direct correlation between the level of Erg3p activity and the antifungal efficacy of fluconazole within a susceptible mammalian host. In addition, low levels of Erg3p activity are apparently more advantageous for C. albicans survival of azole therapy than complete loss of function. These findings suggest a more nuanced but more important role for Erg3p as a determinant of the clinical efficacy of the azole antifungals than previously appreciated. A revised model of the relationship between Erg3p activity, host immunity, and the antifungal susceptibility of C. albicans is proposed.


Assuntos
Antifúngicos , Candida albicans , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Mamíferos , Camundongos , Testes de Sensibilidade Microbiana , Oxirredutases , Esteróis , Virulência
10.
PLoS One ; 17(3): e0265227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35312722

RESUMO

The cytochrome P450 CYP168A1 from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli followed by purification and characterization of function. CYP168A1 is a fatty acid hydroxylase that hydroxylates saturated fatty acids, including myristic (0.30 min-1), palmitic (1.61 min-1) and stearic acids (1.24 min-1), at both the ω-1- and ω-2-positions. However, CYP168A1 only hydroxylates unsaturated fatty acids, including palmitoleic (0.38 min-1), oleic (1.28 min-1) and linoleic acids (0.35 min-1), at the ω-1-position. CYP168A1 exhibited a catalytic preference for palmitic, oleic and stearic acids as substrates in keeping with the phosphatidylcholine-rich environment deep in the lung that is colonized by P. aeruginosa.


Assuntos
Ácidos Graxos , Pseudomonas aeruginosa , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ácidos Esteáricos
11.
J Biol Chem ; 298(4): 101746, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189143

RESUMO

AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can "pull" substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.


Assuntos
Anfotericina B , Proteínas de Bactérias , Streptomyces , Anfotericina B/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Streptomyces/química , Streptomyces/enzimologia , Especificidade por Substrato
12.
mSphere ; 6(6): e0083021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935446

RESUMO

Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress-induced transcription factors such as Upc2 and Upc2A as well as homologs of sterol response element binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other Candida spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a upc2AΔ deletion mutant. This led to the identification of loss-of-function mutations in two genes: ROX1, the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and CST6, a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of ROX1 and UPC2A. In the presence of fluconazole, loss of Rox1 function restores ERG11 expression to the upc2AΔ mutant and inhibits the expression of ERG3 and ERG6, leading to increased levels of ergosterol and decreased levels of the toxic sterol 14α methyl-ergosta-8,24(28)-dien-3ß, 6α-diol, relative to the upc2AΔ mutant. Our observations establish that Rox1 is a negative regulator of ERG gene biosynthesis and indicate that a least one additional positive transcriptional regulator of ERG gene biosynthesis must be present in C. glabrata. IMPORTANCE Candida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway. Sterols are both essential components of the eukaryotic plasma membrane and potential toxins; therefore, sterol homeostasis is critical for cell function. Here, we identified two new negative regulators in C. glabrata of ergosterol (ERG) biosynthesis gene expression. Our results also indicate that in addition to Upc2A, the only known activator of ERG genes, additional positive regulators of this pathway must exist.


Assuntos
Candida glabrata/efeitos dos fármacos , Ergosterol/biossíntese , Fluconazol/farmacologia , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Antifúngicos/farmacologia , Candida glabrata/genética , Candida glabrata/metabolismo , Ergosterol/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo
13.
Antimicrob Agents Chemother ; 65(12): e0104421, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516249

RESUMO

The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by ERG3. Accordingly, mutations that inactivate ERG3 enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of ERG3 homologs from C. albicans (CaERG3), Candida glabrata (CgERG3), Candida auris (CaurERG3), Cryptococcus neoformans (CnERG3), Aspergillus fumigatus (AfERG3A-C) and Rhizopus delemar (RdERG3A/B) were expressed in a C. albicans erg3Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans erg3Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3ß,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans erg3Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/genética , Candida auris , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Oxirredutases , Esterol 14-Desmetilase/genética
14.
Mol Biol Evol ; 38(3): 952-967, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33031537

RESUMO

Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an "orphan" P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.


Assuntos
Evolução Molecular , Methylococcus capsulatus/genética , Esterol 14-Desmetilase/genética , Animais , Humanos , Methylococcus capsulatus/enzimologia , Conformação Proteica , Esterol 14-Desmetilase/química
15.
ChemMedChem ; 15(14): 1294-1309, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32459374

RESUMO

Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide (5 f) <0.03 µg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide (12 c), 1 µg/mL, fluconazole 0.125 µg/mL) but both displayed comparable enzyme binding and inhibition (5 f Kd 62±17 nM, IC50 0.46 µM; 12 c Kd 43±18 nM, IC50 0.33 µM, fluconazole Kd 41±13 nM, IC50 0.31 µM, posaconazole Kd 43±11 nM, IC50 0.2 µM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c, was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Amidas/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Esterol 14-Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Amidas/síntese química , Amidas/química , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/enzimologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Int J Pharm ; 579: 119102, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007592

RESUMO

Acanthamoeba keratitis is caused by a protozoal infection of the cornea, with 80% of cases involving the improper use of contact lenses. The infection causes intense pain and is potentially blinding. However, early diagnosis improves treatment efficacy and the chances of healing. Despite the apparent accessibility of the cornea, patients do not always respond well to current eye drop treatments largely due to rapid dose loss due to blinking and nasolacrimal drainage. Here, the topical drug delivery of voriconazole alone and in combination with diclofenac via drug-loaded contact lenses, were investigated in vitro. The contact lenses were applied onto excised porcine eyeballs and maintained at 32 °C under constant irrigation, with simulated tear fluid applied to mimic in vivo conditions. The drug delivered to the corneas was quantified by HPLC analysis. The system was further tested in terms of cytotoxicity and a scratch wound repopulation model, using resident cell types. Sustained drug delivery to the cornea was achieved and for voriconazole, the MIC against Acanthamoeba castellanii was attained alone and in combination with diclofenac. MTT and scratch wound data showed reasonable cell proliferation and wound repopulation at the drug doses used, supporting further development of the system to treat Acanthamoeba keratitis.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba/efeitos dos fármacos , Lentes de Contato Hidrofílicas , Diclofenaco/administração & dosagem , Voriconazol/administração & dosagem , Ceratite por Acanthamoeba/parasitologia , Administração Oftálmica , Animais , Córnea/metabolismo , Córnea/parasitologia , Diclofenaco/farmacocinética , Modelos Animais de Doenças , Combinação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Testes de Sensibilidade Parasitária , Suínos , Voriconazol/farmacocinética
17.
Int J Antimicrob Agents ; 54(4): 449-455, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310805

RESUMO

Here we report the first evaluation of isavuconazole inhibition of Aspergillus fumigatus CYP51 and thus sterol biosynthesis in the fungus. Voriconazole and isavuconazole both bound tightly to recombinant A. fumigatus CYP51 isoenzymes A and B (AfCYP51A and AfCYP51B) isolated in Escherichia coli membranes. CYP51 reconstitution assays confirmed that AfCYP51A and AfCYP51B as well as three AfCYP51A mutants known to confer azole resistance (G54W, L98H and M220K) were strongly inhibited by both triazoles. Voriconazole bound relatively weakly to purified Homo sapiens CYP51 (HsCYP51), unlike isavuconazole that bound tightly. However, isavuconazole was a relatively poor inhibitor of HsCYP51 activity, with an IC50 value (half-maximal inhibitory concentration) of 25 µM, which was 55- to 120-fold greater than those observed for the A. fumigatus CYP51 enzymes, albeit not as poor an inhibitor of HsCYP51 as voriconazole with an IC50 value of 112 µM. Sterol analysis of triazole-treated A. fumigatus Af293 cells confirmed that isavuconazole and voriconazole both inhibited cellular CYP51 activity with the accumulation of 14-methylated sterol substrates and depletion of ergosterol levels. Isavuconazole elicited a stronger perturbation of the sterol composition in A. fumigatus Af293 than voriconazole at 0.0125 µg/mL, indicating increased potency. However, complementation studies in Saccharomyces cerevisiae using strains containing AfCYP51A and AfCYP51B showed isavuconazole to be equally as effective at inhibiting CYP51 activity as voriconazole. These in vitro studies suggest that isavuconazole is an effective alternative to voriconazole as an antifungal agent against the target CYP51 in A. fumigatus.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Voriconazol/farmacologia , Aspergillus fumigatus/química , Família 51 do Citocromo P450/metabolismo , Humanos , Concentração Inibidora 50 , Ligação Proteica , Proteínas Recombinantes/metabolismo , Esteróis/análise
18.
Proc Natl Acad Sci U S A ; 116(25): 12343-12352, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31167942

RESUMO

Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Família Multigênica , Vírus/enzimologia , Sistema Enzimático do Citocromo P-450/genética
19.
mBio ; 10(2)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940706

RESUMO

Aspergillus fumigatus is the predominant pathogen of invasive aspergillosis, a disease state credited with over 200,000 life-threatening infections each year. The triazole class of antifungals are clinically essential to the treatment of invasive aspergillosis, both as frontline and as salvage therapy. Unfortunately, resistance to the triazoles among A. fumigatus isolates is now increasingly reported worldwide, and a large proportion of this resistance remains unexplained. In this work, we characterize the contributions of previously identified mechanisms of triazole resistance, including mutations in the sterol-demethylase-encoding gene cyp51A, overexpression of sterol-demethylase genes, and overexpression of the efflux pump-encoding gene abcC, among a large collection of highly triazole-resistant clinical A. fumigatus isolates. Upon revealing that these mechanisms alone cannot substantiate the majority of triazole resistance exhibited by this collection, we subsequently describe the identification and characterization of a novel genetic determinant of triazole resistance. Mutations in the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase-encoding gene, hmg1, were identified in a majority of triazole-resistant clinical isolates in our collection. Introduction of three different hmg1 mutations, predicted to encode residue alterations in the conserved sterol sensing domain of Hmg1, resulted in significantly increased resistance to the triazole class of agents. Additionally, correction of a hmg1 mutation in a pan-triazole-resistant clinical isolate of A. fumigatus with a novel Cas9-ribonucleoprotein-mediated system was shown to restore clinical susceptibility to all triazole agents. Mutations in hmg1 were also shown to lead to the accumulation of ergosterol precursors, such as eburicol, by sterol profiling, while not altering the expression of sterol-demethylase genes.IMPORTANCEAspergillus fumigatus is the predominant pathogen of invasive aspergillosis, a disease state credited with over 200,000 life-threatening infections annually. The triazole class of antifungals are clinically essential to the treatment of invasive aspergillosis. Unfortunately, resistance to the triazoles among A. fumigatus isolates is now increasingly reported worldwide. In this work, we challenge the current paradigm of clinical triazole resistance in A. fumigatus, by first demonstrating that previously characterized mechanisms of resistance have nominal impact on triazole susceptibility and subsequently identifying a novel mechanism of resistance with a profound impact on clinical triazole susceptibility. We demonstrate that mutations in the HMG-CoA reductase gene, hmg1, are common among resistant clinical isolates and that hmg1 mutations confer resistance to all clinically available triazole antifungals.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Farmacorresistência Fúngica , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas Mutantes/metabolismo , Triazóis/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Proteínas Mutantes/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-30910896

RESUMO

The fungal Cyp51-specific inhibitors VT-1161 and VT-1598 have emerged as promising new therapies to combat fungal infections, including Candida spp. To evaluate their in vitro activities compared to other azoles, MICs were determined by Clinical and Laboratory Standards Institute (CLSI) method for VT-1161, VT-1598, fluconazole, voriconazole, itraconazole, and posaconazole against 68 C. albicans clinical isolates well characterized for azole resistance mechanisms and mutant strains representing individual azole resistance mechanisms. VT-1161 and VT-1598 demonstrated potent activity (geometric mean MICs ≤0.15 µg/ml) against predominantly fluconazole-resistant (≥8 µg/ml) isolates. However, five of 68 isolates exhibited MICs greater than six dilutions (>2 µg/ml) to both tetrazoles compared to fluconazole-susceptible isolates. Four of these isolates likewise exhibited high MICs beyond the upper limit of the assay for all triazoles tested. A premature stop codon in ERG3 likely explained the high-level resistance in one isolate. VT-1598 was effective against strains with hyperactive Tac1, Mrr1, and Upc2 transcription factors and against most ERG11 mutant strains. VT-1161 MICs were elevated compared to the control strain SC5314 for hyperactive Tac1 strains and two strains with Erg11 substitutions (Y132F and Y132F&K143R) but showed activity against hyperactive Mrr1 and Upc2 strains. While mutations affecting Erg3 activity appear to greatly reduce susceptibility to VT-1161 and VT-1598, the elevated MICs of both tetrazoles for four isolates could not be explained by known azole resistance mechanisms, suggesting the presence of undescribed resistance mechanisms to triazole- and tetrazole-based sterol demethylase inhibitors.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Piridinas/farmacologia , Tetrazóis/farmacologia , Candida albicans/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...